Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation.

نویسندگان

  • Kevin K Diehn
  • Hyuntaek Oh
  • Reza Hashemipour
  • Richard G Weiss
  • Srinivasa R Raghavan
چکیده

Many small molecules can self-assemble by non-covalent interactions into fibrous networks and thereby induce gelation of organic liquids. However, no capability currently exists to predict whether a molecule in a given solvent will form a gel, a low-viscosity solution (sol), or an insoluble precipitate. Gelation has been recognized as a phenomenon that reflects a balance between solubility and insolubility; however, the distinction between these regimes has not been quantified in a systematic fashion. In this work, we focus on a well-known gelator, 1,3:2,4-dibenzylidene sorbitol (DBS), and study its self-assembly in various solvents. From these data, we build a framework for DBS gelation based on Hansen solubility parameters (HSPs). While the HSPs for DBS are not known a priori, the HSPs are available for each solvent and they quantify the solvent's ability to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. Using the three HSPs, we construct three-dimensional plots showing regions of solubility (S), slow gelation (SG), instant gelation (IG), and insolubility (I) for DBS in the different solvents at a given temperature and concentration. Our principal finding is that the above regions radiate out as concentric shells: i.e., a central solubility (S) sphere, followed in order by spheres corresponding to SG, IG, and I regions. The distance (R0) from the origin of the central sphere quantifies the incompatibility between DBS and a solvent-the larger this distance, the more incompatible the pair. The elastic modulus of the final gel increases with R0, while the time required for a super-saturated sol to form a gel decreases with R0. Importantly, if R0 is too small, the gels are weak, but if R0 is too large, insolubility occurs-thus, strong gels fall within an optimal window of incompatibility between the gelator and the solvent. Our approach can be used to design organogels of desired strength and gelation time by judicious choice of a particular solvent or a blend of solvents. The above framework can be readily extended to many other gelators, including those with molecular structures very different from that of DBS. We have developed a MATLAB program that will be freely available (upon request) to the scientific community to replicate and extend this approach to other gelators of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator

Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficien...

متن کامل

To gel or not to gel: correlating molecular gelation with solvent parameters.

Rational design of small molecular gelators is an elusive and herculean task, despite the rapidly growing body of literature devoted to such gels over the past decade. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the ...

متن کامل

Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure.

Some organic compounds form gels in liquids by forming a network of anisotropic fibres. Based on extensive solubility tests of four gelators of similar structures, and on Hansen solubility parameter formalism, we have probed the quantitative effect of a structural variation of the gelator structure on its gel formation ability. Increasing the length of an alkyl group of the gelator obviously re...

متن کامل

Prediction of Protein Solubility in Escherichia Coli Using Discriminant Analysis, Logistic Regression, and Artificial Neural Network Models

Recombinant DNA technology is important in the mass production of proteins for academic, medical, and industrial use, and the prediction of the solubility of proteins is a significant part of it. However, the protein solubility when overexpressed in a host organism is difficult to predict. Thus, a model capable of accurately estimating the likelihood of proteins to form insoluble inclusion bodi...

متن کامل

Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors.

We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the prec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 15  شماره 

صفحات  -

تاریخ انتشار 2014